Source code for cellarium.ml.core.module

# Copyright Contributors to the Cellarium project.
# SPDX-License-Identifier: BSD-3-Clause

import warnings
from collections.abc import Iterable
from typing import Any

import lightning.pytorch as pl
import numpy as np
import torch
from lightning.pytorch.utilities.types import STEP_OUTPUT, OptimizerLRSchedulerConfig

from cellarium.ml.core.datamodule import CellariumAnnDataDataModule, collate_fn
from cellarium.ml.core.pipeline import CellariumPipeline
from cellarium.ml.models import CellariumModel
from cellarium.ml.utilities.core import FunctionComposer, copy_module


[docs] class CellariumModule(pl.LightningModule): """ ``CellariumModule`` organizes code into following sections: * :attr:`cpu_transforms`: A list of transforms to apply to the input data as part of the dataloader on CPU. * :attr:`transforms`: A list of transforms to apply to the input data before passing it to the model. * :attr:`module_pipeline`: A :class:`CellariumPipeline` to apply all transforms, minus the CPU transforms if they are handled by a :class:`CellariumAnnDataDataModule`, and the model. * :attr:`model`: A :class:`CellariumModel` to train with :meth:`training_step` method and epoch end hooks. * :attr:`optim_fn` and :attr:`optim_kwargs`: A Pytorch optimizer class and its keyword arguments. * :attr:`scheduler_fn` and :attr:`scheduler_kwargs`: A Pytorch lr scheduler class and its keyword arguments. Args: cpu_transforms: A list of transforms to apply to the input data as part of the dataloader on CPU. These transforms get applied before other ``transforms``. If ``None``, no transforms are applied as part of the dataloader. transforms: A list of transforms to apply to the input data before passing it to the model. If ``None``, no transforms are applied. model: A :class:`CellariumModel` to train. optim_fn: A Pytorch optimizer class, e.g., :class:`~torch.optim.Adam`. If ``None``, no optimizer is used. optim_kwargs: Keyword arguments for optimiser. scheduler_fn: A Pytorch lr scheduler class, e.g., :class:`~torch.optim.lr_scheduler.CosineAnnealingLR`. scheduler_kwargs: Keyword arguments for lr scheduler. is_initialized: Whether the model has been initialized. This is set to ``False`` by default under the assumption that ``torch.device("meta")`` context was used and is set to ``True`` after the first call to :meth:`configure_model`. """ def __init__( self, cpu_transforms: Iterable[torch.nn.Module] | None = None, transforms: Iterable[torch.nn.Module] | None = None, model: CellariumModel | None = None, optim_fn: type[torch.optim.Optimizer] | None = None, optim_kwargs: dict[str, Any] | None = None, scheduler_fn: type[torch.optim.lr_scheduler.LRScheduler] | None = None, scheduler_kwargs: dict[str, Any] | None = None, is_initialized: bool = False, ) -> None: super().__init__() with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="Attribute 'model' is an instance of `nn.Module`") self.save_hyperparameters(logger=False) self.pipeline: CellariumPipeline | None = None self._cpu_transforms_in_module_pipeline: bool = True if optim_fn is None: # Starting from PyTorch Lightning 2.3, automatic optimization doesn't allow to return None # from the training_step during distributed training. https://github.com/Lightning-AI/pytorch-lightning/pull/19918 # Thus, we need to use manual optimization for the No Optimizer case. self.automatic_optimization = False
[docs] def configure_model(self) -> None: """ .. note:: This hook is called during each of fit/val/test/predict stages in the same process, so ensure that implementation of this hook is idempotent, i.e., after the first time the hook is called, subsequent calls to it should be a no-op. Steps involved in configuring the model: 1. Freeze the transforms if they are instances of :class:`~cellarium.ml.core.CellariumModule`. 2. Make a copy of modules on the ``meta`` device and assign to :attr:`hparams`. 3. Send the original modules to the host device and add to :attr:`pipeline`. 4. Reset the model parameters if it has not been initialized before. 5. Assemble the full pipeline by concatenating the CPU transforms, transforms, and the model. 6. If the training is handled by the ``pl.Trainer`` and the dataloader is an instance of :class:`CellariumAnnDataDataModule`, then the CPU transforms are dispatched to the dataloader's ``collate_fn`` and the :attr:`module_pipeline` calls only the (GPU) transforms and the model. Otherwise, the :attr:`module_pipeline` calls the full pipeline. For more context, see discussions in https://dev-discuss.pytorch.org/t/state-of-model-creation-initialization-seralization-in-pytorch-core/1240 Benefits of this approach: 1. The checkpoint stores modules on the meta device. 2. Loading from a checkpoint skips a wasteful step of initializing module parameters before loading the ``state_dict``. 3. The module parameters are directly initialized on the host gpu device instead of being initialized on the cpu and then moved to the gpu device (given that modules were instantiated under the ``torch.device("meta")`` context). """ if self.pipeline is not None: return model, self.hparams["model"] = copy_module( self.hparams["model"], self_device=self.device, copy_device=torch.device("meta") ) if self.hparams["cpu_transforms"]: for transform in self.hparams["cpu_transforms"]: if isinstance(transform, CellariumModule): transform.freeze() cpu_transforms, self.hparams["cpu_transforms"] = zip( *( copy_module(transform, self_device=self.device, copy_device=torch.device("meta")) for transform in self.hparams["cpu_transforms"] ) ) else: cpu_transforms = tuple() if self.hparams["transforms"]: for transform in self.hparams["transforms"]: if isinstance(transform, CellariumModule): transform.freeze() transforms, self.hparams["transforms"] = zip( *( copy_module(transform, self_device=self.device, copy_device=torch.device("meta")) for transform in self.hparams["transforms"] ) ) else: transforms = tuple() if not isinstance(model, CellariumModel): raise ValueError(f"`model` must be an instance of {CellariumModel}. Got {model}") self.pipeline = CellariumPipeline(cpu_transforms + transforms + (model,)) # the full pipeline if not self.hparams["is_initialized"]: model.reset_parameters() self.hparams["is_initialized"] = True # move the cpu_transforms to the dataloader's collate_fn if the dataloader is going to apply them if self._trainer is not None: if hasattr(self.trainer, "datamodule"): if isinstance(self.trainer.datamodule, CellariumAnnDataDataModule): self._cpu_transforms_in_module_pipeline = False self.trainer.datamodule.collate_fn = FunctionComposer( first_applied=collate_fn, second_applied=self.cpu_transforms, )
def __repr__(self) -> str: if not self._cpu_transforms_in_module_pipeline: cpu_trans_str = str(self.cpu_transforms).replace("\n", "\n ") trans_str = str(self.transforms).replace("\n", "\n ") repr = ( f"{self.__class__.__name__}(" + ( f"\n [ dataloader CPU transforms = \n {cpu_trans_str}\n ]" if not self._cpu_transforms_in_module_pipeline else "" ) + f"\n transforms = {trans_str}" + f"\n model = {self.model}" + "\n)" ) else: repr = f"{self.__class__.__name__}(pipeline = {self.module_pipeline})" return repr @property def model(self) -> CellariumModel: """The model""" if self.pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") return self.pipeline[-1] @property def transforms(self) -> CellariumPipeline: """The transforms pipeline""" if self.pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") return self.pipeline[self._num_cpu_transforms : -1] @property def cpu_transforms(self) -> CellariumPipeline: """The CPU transforms pipeline to be applied by the dataloader""" if self.pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") return self.pipeline[: self._num_cpu_transforms] @property def _num_cpu_transforms(self) -> int: return 0 if self.hparams["cpu_transforms"] is None else len(self.hparams["cpu_transforms"]) @property def module_pipeline(self) -> CellariumPipeline: """The pipeline applied by :meth:`training_step`, :meth:`validation_step`, and :meth:`forward`""" if self.pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") return self.pipeline if self._cpu_transforms_in_module_pipeline else self.pipeline[self._num_cpu_transforms :]
[docs] def training_step( # type: ignore[override] self, batch: dict[str, np.ndarray | torch.Tensor], batch_idx: int ) -> torch.Tensor | None: """ Forward pass for training step. Args: batch: A dictionary containing the batch data. batch_idx: The index of the batch. Returns: Loss tensor or ``None`` if no loss. """ if self.module_pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") output = self.module_pipeline(batch) loss = output.get("loss") if loss is not None: # Logging to TensorBoard by default self.log("train_loss", loss, sync_dist=True) if not self.automatic_optimization: # Note, that running .step() is necessary for incrementing the global step even though no backpropagation # is performed. no_optimizer = self.optimizers() assert isinstance(no_optimizer, pl.core.optimizer.LightningOptimizer) no_optimizer.step() return loss
[docs] def forward(self, batch: dict[str, np.ndarray | torch.Tensor]) -> dict[str, np.ndarray | torch.Tensor]: """ Forward pass for inference step. Args: batch: A dictionary containing the batch data. Returns: A dictionary containing the batch data and inference outputs. """ if self.module_pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") return self.module_pipeline.predict(batch)
[docs] def validation_step(self, batch: dict[str, Any], batch_idx: int) -> None: """ Forward pass for validation step. Args: batch: A dictionary containing the batch data. batch_idx: The index of the batch. Returns: None """ if self.module_pipeline is None: raise RuntimeError("The model is not configured. Call `configure_model` before accessing the model.") self.module_pipeline.validate(batch)
[docs] def configure_optimizers(self) -> OptimizerLRSchedulerConfig | None: """Configure optimizers for the model.""" optim_fn = self.hparams["optim_fn"] optim_kwargs = self.hparams["optim_kwargs"] or {} scheduler_fn = self.hparams["scheduler_fn"] scheduler_kwargs = self.hparams["scheduler_kwargs"] or {} if optim_fn is None: if optim_kwargs: warnings.warn("Optimizer kwargs are provided but no optimizer is defined.", UserWarning) if scheduler_fn is not None: warnings.warn("Scheduler is defined but no optimizer is defined.", UserWarning) return None optim_config: OptimizerLRSchedulerConfig = {"optimizer": optim_fn(self.model.parameters(), **optim_kwargs)} if scheduler_fn is not None: scheduler = scheduler_fn(optim_config["optimizer"], **scheduler_kwargs) optim_config["lr_scheduler"] = {"scheduler": scheduler, "interval": "step"} return optim_config
[docs] def on_train_epoch_start(self) -> None: """ Calls the ``set_epoch`` method on the iterable dataset of the given dataloader. If the dataset is ``IterableDataset`` and has ``set_epoch`` method defined, then ``set_epoch`` must be called at the beginning of every epoch to ensure shuffling applies a new ordering. This has no effect if shuffling is off. """ # dataloader is wrapped in a combined loader and can be accessed via # flattened property which returns a list of dataloaders # https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.utilities.combined_loader.html combined_loader = self.trainer.fit_loop._combined_loader assert combined_loader is not None dataloaders = combined_loader.flattened for dataloader in dataloaders: dataset = dataloader.dataset set_epoch = getattr(dataset, "set_epoch", None) if callable(set_epoch): set_epoch(self.current_epoch)
[docs] def on_train_start(self) -> None: """ Calls the ``on_train_start`` method on the :attr:`model` attribute. If the :attr:`model` attribute has ``on_train_start`` method defined, then ``on_train_start`` must be called at the beginning of training. """ on_train_start = getattr(self.model, "on_train_start", None) if callable(on_train_start): on_train_start(self.trainer)
[docs] def on_train_epoch_end(self) -> None: """ Calls the ``on_train_epoch_end`` method on the :attr:`model` attribute. If the :attr:`model` attribute has ``on_train_epoch_end`` method defined, then ``on_train_epoch_end`` must be called at the end of every epoch. """ on_train_epoch_end = getattr(self.model, "on_train_epoch_end", None) if callable(on_train_epoch_end): on_train_epoch_end(self.trainer)
[docs] def on_train_batch_end(self, outputs: STEP_OUTPUT, batch: Any, batch_idx: int) -> None: """ Calls the ``on_train_batch_end`` method on the module. """ on_train_batch_end = getattr(self.model, "on_train_batch_end", None) if callable(on_train_batch_end): on_train_batch_end(self.trainer)